
Tree Pruning Based Searching of Similar
Trajectories

Gajanan S. Gawde#1, Jyoti D. Pawar#2
#1Computer Engineering Department, Goa College of Engineering

Farmagudi – Ponda , Goa – India
#2 Department of Computer Science & Technology, Goa University

Taleigao Plateau– Panaji , Goa - India

Abstract— Edit distance measures such as DTW, EDR , ERP ,
LCSS are used to compare trajectories for similarity. These
distance measures are defined recursivly. The tree structure of
such distance measures have large number of nodes. The large
number of nodes make such distance measures more costly in
terms of time complexity. There is need to reduce the number
of nodes of tree and makes it more faster. After analysing the
tree structure of different resursive edit distance measures, we
have found that there are many duplicate nodes present in the
tree and these duplicate nodes can be eliminated. We have
proposed two algorithms which eliminate the duplcate nodes
and makes algorithm more efficient as compared to existing
distance measures. The first algorithm, PruneMatrix prune
the tree based on the duplicate nodes found in the tree and
unique nodes are stored in the matrix. As an when duplicate
node is found , it is inserted into the matrix. This technique
has extra overhead of processing matrix as and when node is
added or searched an thus reduces the performance. In order
to eliminate this extra overhead , we have proposed second
algorithm, PruneHash, identifies the duplicate nodes and store
it in hash table instead of table. Hash table takes constant time
to search node from the table, thereby increasing the
performance. We have carried out extensive experimental
study on different datasets and recorded the performance of
existing and proposed techniques. Experimental results
revealed that, PruneMatrix and PruneHash techniques are
efficient compared to the existing methods, whereas
PruneHash technique is faster compared to PruneMatrix.

Keywords— Edit Distances, Tre Pruning, Prune Matrix,
Prune Hashing.

I. INTRODUCTION

Large number of time series trajectories are generated by
moving objects and such trajectories need to be processed
to extract hidden information. Extracting hidden
information from time series trajectories is very challenging
task and also time consuming. Two time series trajectories
are compared using edit distance measures for similarity.
The similarity distance computed by edit distance will
decide whether trajectories are similar or not. If the
similarity distance is less or equal to some threshold value ,
then two trajectories said to be similar. Edit distance such
as DTW,EDR,ERP and LCSS are basic and popular
distance measures used to compare time series trajectories
for similarity. These distance measures are defined
recursivly as shown below:-

1. Dynamic Time Waring (DTW) measure:-
DTW (R, S) = dist (r1, s1) + min { (DTW (Rest (R), Rest (S)),

DTW (Rest (R), S), DTW (R, Rest (S))) } (1)

2. Edit Distance with Real Sequence measure:-
EDR (R,S) = min { (EDR (Rest (R), Rest (S)) + Matchdist,

EDR (Rest(R),S) + 1, EDR (R,Rest (S)) + 1) } (2)
3. Edit Distance with Real Penalty measure :-

ERP(R,S) = min{ (ERP(Rest(R), Rest(S)) + dist (r 1, s1),
ERP(Rest(R),S) + dist (r1, g), EDR(R,Rest(S)) + dist (s1, g) }

(3)
4. Longest Common Sub Sequence measure:-
LCSS(R,S) = max{(LCSS(Rest(R),Rest(S)) + 1, LCSS(Rest(R

), S) + dist (r1, g),LCSS(R,Rest(S)) + dist(s1,g) } (4)
 All the above distance measures discussed are recursive

in nature. This recursive definition of distance measures is
responsible for generating huge tree with large number of
nodes. After careful study of tree generated , we have
revealed that there are many duplicates nodes present in the
tree. These nodes need to be eliminated in order to reduce
the time complexity. Recursive function terminates when
the length of either one of the two trajectories is zero and it
returns the similarity value as the minimum of the
arguments passed to the recursive function.

There are many applications of similarity search of time
series trajectories.

1. Personal Security:- Every eminent personality is
worried about his or her security. Each day they are under
tension that someone is following or traking them. There is
need to provide safey to such people by identifying
possible threat from unknown people. Searching of similar
trajectories will identify all the persons whose trajectories
are almost similar to eminent person. If trajectories are
matching, then for how many days such similarities are
found and cross checked with threshold value. If number of
count is greater than some threshold value, then warning
message is send to eminent personality for possible threat
and proper care can be taken to avoid possible attack in near
future.

2. ECG of Patient:- Most of time , doctors are checking
ECG of the patient manually and such practice is harmful
since human being can make a mistake. Manually checking
of ECG is need to be eliminated and there is need to make
this process automatic. In automatic system, ECG of the
patient can be compared with the normal ECG of the
persons which is stored in the database. If the ECG of the
patient is not matching with the normal ECG of the person ,
then there is some problem with the patient and he might be
suffering from a heart problem. Our automatic system
would compare time series trajectories of ECG and display
final results to the doctor, and based on the output doctor
would take appropriate action. If ECGs are not matching ,

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 1

then doctor might perform thorough investigation on the
ECG to identify main cause of the problem.

3. Traffic Management:- Vehicles Trajectories can be
used to manage the amount of traffic on the road. The flow
of traffic can be analysed by capturing traffic passing on the
road and in case of congestion , alternate solution can be
proposed. RTO officers can used the traffic information and
depute traffic police staff to control the flow of traffic.

4. Famous Routes:- Vehicles Trajectories can be used to
identify popular routes in the given state or country. The
trajectories of the vehicles can be compared with database
trajectories to identify number of similar trajectories. If the
number of the matched trajectories are above certain
threhold value, then that route can be called as a popular
route.

Contribution of our work in this paper is as follows:
1. We have proposed PruneMatrix Technique to prune the

number of nodes of tree.
2. In order to reduce extra overhead of PruneMatrix, we

have proposed PruneHash Technique to prune the
number of nodes of the tree.

3. Experimental results revealed that, PruneMatrix and
PruneHash are efficient compared to existing
techniques, further, PruneHash is efficient compared to
PruneMatrix technique.

The rest of paper is organised as follows. In section 2 we
present related work. In section 3, we propose PruneMatrix
and PruneHash algorithms to prune redundant nodes of tree.
Section 4, provides the experimental results and finally,
section 5 concludes the paper.
Symbols Meaning

R Time Series Trajectory

S Time Series Trajectory

[M,N] M is the length of R trajectory
N is the length of S trajectory

PruneMatrix Pruning tree using Matrix

PruneHash Pruning tree using Hashing

TABLE 1: MEANING OF SYMBOLS USED

II. RELATED WORK

Searching of similar trajectories is challenging problem
and there is constant demand for efficient distance measure.
Quite a few researchs have been contributed toward this
field by proposing distance measures. The pioneering work
by [1] ,[2] to compare trajectories for similarity using
Euclidean distance measure. Eucledian distance measure
cannot be applied directly to compare trajectories and thus
there is need of scaling and translation of trajectories. In [3]
trajectories were scaled and translated efficiently and
compared for similarity. Eucledian distance measure is
sensitive towards noise and local time shifting. [4]
introduced DTW to allow a time series trajectories to be
stretched to provide better match with another trajectories.
DTW distance measure was compared for the perfomance
and DTW was enhanced using lower bounding distance
measure with segmentation in [5]. [6] introduced bounded
similarity query with the help of eucledian distance to

identify similar time series. [7] have proposed Eros,Muse
and Ropes distance measures to identify k-nearest
neigbhour using principle component.

LCSS distance measure is used in [8] and [9] to compare
trajectories for similarity. LCSS measure allows a variable
length gap to be inserted during matching of trajectories
and hence robust to the noise. Extended LCSS distance
measure is used to compare trajectories from video in [10].
Initially trajectories were extracted from video and then
subsequently compared for similarity using LCSS measure.
Multi dimesional trajectories were compared for similarity
using LCSS in [9]. In [11] LCSS distance measure was
modelled with sigmoidal function to compares trajectories
for similarity. Mostly index need to be created again and
again and most of distance measures are modeled to support
single distance measure. In [12], index multi dimensional
trajectories supporting multiple distance measures such as
LCSS , DTW are proposed and the index structure was
design in a such a way that there was no need to rebuild
index again and again. Various dimensionality reduction
methods were investigated in [13] and proposed novel PAA
technique to reduce dimensionality. In [14] figure out the
extra computation done by LCSS and same is enhanced by
fine tuning the threshold value.

Most of distance measures are time consuming and hence
there is need to index such distance measures.Various
indexing techniques [15-20] were proposed to improve the
performance of distance measures. Lower bound technique
is proposed to index the distance measure and compares
trajectories for similarity in [19].[21] have enhanced the
indexing method of DTW by modeling exact indexing.
Human motions were efficiently indexed using bounding
rectangle by [22]. In [23] authors have proposed technique
o create index only once and multiple tranformations were
applied instead of appliying indexing multiple times, thus
improving the perfomance of distance measure.

[24] proposed landmark similarity distance measure to
compares trajectories for similarity by considering
landmark as human perception and comparing trajectories
based on lanmarks. Distance measure is defined using
geometric set with deterministic and random property in
[25]. Trajectories were aggregated and compared for
similarity in [26]. In [27], One way distance(OWD)
measures were proposed to compare the similarity between
trajectories. In [28], moving objects were detected using
Gaussian Hermit moments(GHM) based on the trajectories
and also it identify direction of objects. The gestures of
human motion were recognised based on the trajectories
generated by human body in [29]. Eigen tracker technique
was proposed to detect the changing shapes of human
gesture. Anomaly behaviour of crowded surveillance
screnes were detected using statistical method in [30].
Popular routes were detected using similar trajectories
matching in [31]. The popular routes were detected
automatically without taking much inputs from the user and
based on the probabilistic method.In [32], RICK framework
was defined to identify popular routes from uncertain
trajectories. In [33], the hot route was identified based on
the traffic density on the road and flowscan framework was
developed.

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 2

III. TREE PRUNING BASED TECHNIQUE

The recursive nature of edit distance measures are
responsible for generating huge tree structure with large
number of nodes. As the size of datasets is increasing, the
number of nodes of tree is growing exponentially. For every
call, three nodes are getting created and each node in turn
makes a call to three more functions and which create three
more nodes and this process continues till both input
trajectories are processed. We have applied PruneMatrix
and PruneHash to DTW distance measures and similarly
can be applied to remaining distance measures.

The DTW distance measure algorithm is shown in
algorithm 1. The DTW distance measure is defined as
recursive function which call itself and for every recursive
call it make three recursive calls. Each function call is
consider as node of the tree. DTW recursive function
generate tree structure with large number of nodes and each
node of the tree is processed to compute similarity
distance. DTW recursive function is discussed in detail in
Algorithm 1.

Algorithm 1: DTW(I,J) Algorithm
--
 Input: R and S : Input Trajectories
 Output: Similarity Distance : dist
1) if I == N or J == M then
2) return 0
3) d= dist(I,J)
4) return
d+min{DTW(I++,J++),DTW(I,J++),DTW(I+,J)}

Consider the two input trajectories R={(1,1),(1,2)} and
S={(3,1),(1,4)} of length 2 respectively. The tree of the
recursive DTW distance measure for two input trajectories
R and S is as shown in the Figure 1. Each node is
represented with the index value of two trajectories such as
i and j. When the call is made to the recursive DTW
function, index value of i and j are updated. Initially the
root node of the tree has initialise to to 0, indicating two
trajectories are processed from first point. The nodes n2,n10
and n12 having the same value (1,1) and these nodes are
duplicate nodes. There is no need to process such nodes
three times. Such node can be processed only once and we
can use its processed value for rest of the computation.
Thus , we can prune the subtree of duplicate nodes without
further processing.

Figure 1 : Tree for Recursive Function

A. PruneMatrix Algorithm

The DTW recursive function makes three recursive calls
and goes in the depth first search manner. Each recursive
call is considered to be a node of the tree. So, every node is
expanded as three child nodes of tree till leaf node is
explored. After reaching leaf node , function backtrack to
its previous explored node and try to explore remaining
paths of the tree. Once root node is visited after
backtracking all the nodes of the tree, the similarity distance
is computed.

In PruneMatrix algorithm , every new node information
is kept in the matrix and subsequently used to check if there
are
any duplicate nodes down the tree. Starting with root node,
root node is stored in the matrix and three more nodes are
explored. The new node which is generated is first checked
in the matrix ,if this node is not present, then it is added to
the matrix and its child nodes are explored. If node is
already present in the matrix , then this node is not added to
matrix and it is marked as duplicate node. Since it is
duplicate node , there is no need to explore its subtree and
skip the entire subtree. Thus , we are reducing the number
of nodes of tree.

 Algorithm 2: PruneMatrix(I,J) Algorithm
--
 Input: R and S : Input Trajectories
 Output: Similarity Distance : dist
1) if I == N or J == M then
2) return 0
3) str1=str1 + R[I]
4) str2= str2 + S[j]
5) for each point k 2 count do
6) if Lookup[k].w1 ==str1 and Lookup[k].w2 ==str2
 then
7) flag=1
8) distprune=Lookup[k].dist
9) if flag == 1 then
10) return distprune
11) d=dist(I,J)
12) td = d + min {PruneMatrix (I++,J++),

PruneMatrix(I,J++), PruneMatrix(I++,J) }
13) Lookup[count++].w1=str1
14) Lookup[count++].w2=str2
15) Lookup[count++].dist=td
16) return td

The PruneMatrix algorithm is discussed in detail in

Algorithm 2. Lines 1-2, define terminating condition for the
PruneMatrix function. If length of either of the trajectory is
equal to the length, then terminate the recursive call. Lines
5-10, search node in the matrix and if the node is found ,
then recursive call to PruneMatrix is not made. If the node
is not found in the matrix , then new nodes are explored by
making call to recursive PruneMatrix function. Line 12,
makes call to recursive PruneMatrix function with three
arguments. Lines 13-15, add new node to the matrix.

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 3

B. PruneHash Algorithm

PruneMatrix algorithm stores the information of every
new node it encounter into the matrix. As the size of the
matrix is grows large, we need to check if the node is
present in the matrix. So, the time complexity of searching
a node in matrix is of the order O(N) where N is the number
of elements of the matrix. This is an extra overhead of the
PruneMatrix algorithm and our algorithm slow down as the
number of elements of time series trajectories increases. In
order to remove this extra overhead , we have proposed
hashing technique to reduce the time complexity of the
searching. The time complexity of searching using hash
function is of the order of constant i.e. O(C) where C is the
constant.

We have proposed PruneHash Algorithm which
eliminates the extra overhead faced by the PruneMatrix
algorithm. In PruneHash algorithm , we have defined hash
function using index i and j of two trajectories. Hash
function is used to generate hash value to generate the index
and this index is used to search the node in the matrix rather
than performing sequential search. First, we are checking if
new node is present in the Hash Table. If new node is not
present, then we add this new node to the Hash Table with
the help of index value computed using Hash function. The
search operation on Hash Table is performed by using hash
function in constant time. So , also to store the value in the
Hash Table , the hash function is used. Using Hashing
technique we are performing searching in constant time and
therefore there is reduction of execution time at each node.

 Algorithm 3: PruneHash(I,J) Algorithm
--
 Input: R and S : Input Trajectories
 Output: Similarity Distance : dist
1) if I == N or J == M then
2) return 0
3) str1=str1 + R[I]
4) str2= str2 + S[j]
5) str= str1 + str2
6) index = (I merge J) mod N
7) if Lookup[index].w1 ==str1 and Lookup[index].w2
==str2 then
8) flag=1
9) distprune=Lookup[index].dist
10) if flag == 1 then
11) return distprune
12) d=dist(I,J)
13) td = d + min{PruneHash(I++,J++),PruneHash(I,J+
+),PruneHash(I++,J) }
14) index = (I merge J) mod N
15) Lookup[index].w1=str1
16) Lookup[index].w2=str2
17) Lookup[index].dist=td
18) return td

The PruneHash algorithm is discussed in detail in

Algorithm 3. Lines 1-2, define terminating condition for the
PruneHash function. If length of either of the trajectory is
equal to the length, then terminate the recursive call. Lines

5-11, search node in the hash table using hashing function
and if the node is found , then recursive call to PruneHash
is not made. If the node is not found in the hash table , then
new nodes are explored by making call to recursive
PrunePrune function. Line 13, makes call to recursive
PruneHash function with three arguments. Lines 14-17, add
new node to the hash table.

IV. EXPERIMENTAL STUDY

A. Characteristic of Trajectories Datasets

Character Trajectories:- This dataset is genetated by
Lichman (2013), it consist of 2858 character samples,
contained in the Three Dimensional Matrix. Each character
sample is a 3-dimensional pen tip velocity trajectory. This
is contained in matrix format, with 3 rows and T columns
where T is the length of the character sample.
UJI Pen Character:- This dataset is generated by Lichman
(2013), a character database by collecting samples from 11
writers. Each writer contributed with letters (lower and
uppercase), digits, and other characters. Two samples have
been collected for each pair writer/ character, so the total
number of samples in this database version is 1364.
Optical Recognition Character:- This dataset is generated
by UCI Lichman (2013), who have used preprocessing
programs made available by NIST to extract normalized
bitmaps of handwritten digits from a preprinted form. From
a total of 43 people, 30 contributed to the training set and
different 13 to the test set. 32x32 bitmaps are divided into
nonoverlapping blocks of 4x4 and the number of on pixels
are counted in each block. This generates an input matrix of
8x8 where each element is an integer in the range 0 to 16.
This reduces dimensionality and gives invariance to small
distortions.
Real Time Characters :- This is our own synthetic dataset
generated in real time with the help of 100 user. This
dataset is generated using VB.net platform. Each user was
asked to draw character on the display screen and same
character was saved in the form of character trajectories.
Each person had generated 50 number of different character
trajectories.

B. System Configuration

Experimental study was carried out on Pentium V
processor with 4GB of RAM and 500GB of harddisk
memory. All the programs were successfuly implemented
using C++ language. The g++ compiler was used to
compile the C++ programs. Ubuntu 12.04 operating system
was used to carry out experimental study. The programs
were debugged thoroughly and correct output was obtained.
Experimental study was carried out with different character
datasets such as Character Trajectories, UJI Pen character,
Optical Recognition of Character and MouseTracking
character Trajectories datasets.

C. Results and Interpretation

Our proposed PruneMatrix and PruneHash algorithms
were tested on different datasets and their execution time
and number of nodes generated were recorded. The number
of nodes generated using basic distance measures and the
proposed pruning techniques were compared and result is

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 4

shown in the Table 2. As the length of trajectories is
increasing , the number of nodes also increases
exponentially. The pruned algorithm reduces the duplicate
nodes and number of nodes in the tree are reduced
drastically. This lead to the reduction in the execution time
of the algorithm.

Trajectory Length DTW PruneMatrix

2 19 13

3 94 28

4 481 49

5 2524 76

TABLE 2 : PERFORMANCE OF EDIT DISTANCES NOS OF NODES

Trajectory Length DTW (ms) PruneMatrix (ms)

10 0.4 0

11 2.22 0

12 12.38 0

13 71.41 0

TABLE 3: PERFORMANCE OF EDIT DISTANCE EXECUTION TIME

Trajectory Length PruneMatrix(ms) PruneMatrix(ms)

100 1.72 0.072

200 28.31 0.28

300 144.46 0.650

400 464.10 1.17

TABLE 4: PERFORMANCE OF PRUNEMATRIX AND PRUNEHASH IN TERM OF

EXECUTION TIME.

Execution time of the proposed algorithms were recorded
with different length of trajectories. The basic edit distances
are taking lot of time and their execution time increases
exponentially. The trajectory of length 10 takes 0.40s of
execution time whereas length of 13 takes 71.41s. This
indicates that, as the length of the time series trajectory
increases, its execution time also increases exponentially
and it is huge. On the other hand , our proposed prune
algorithm takes negligible amount of time for the length of
10,11,12,13 and it is almost zero as shown in the table 3.

Figure 2: Reduction Ration of Proposed Techniques

We have tested our proposed PruneMatrix and PruneHash
algorithms on different set of datasets. PruneMatrix and
PruneHash algorithms were tested on time series
trajectories of very large length and the results of two
algorithms is shown in the table 4. The PruneMatrix
algorithm is taking more time compared to PruneHash
algorithm. PruneHash is very fast and it is very efficient as
compared to PruneMatrix algorithm. Our proposed
PruneMatrix and PruneHash algorithms to reduce the
duplicate nodes of the tree. The amount of reduction
achieved using both the algorithms are very high and same
can be seen from the graph shown in Figure 2. As the
length of trajectories increases , the reduction ratio is
increasing exponentially. Initially the reduction ratio is
small but as it crosses trajectory length of 10 , the reduction
ratio is almost equal to 99.5 and thereafter it remains
constant. The Performance of PruneMatrix and PruneHash
algorithms is shown in Figure 3 graphically.

Figure 3: Performance of PruneMatrix and PruneHash

 CONCLUSION

We have proposed novel PruneMatrix and PruneHash
algorithms to improve the performance of the existing basic
distance measures. Our proposed pruning techniques
identify duplicate nodes of the tree and pruned the nodes to
reduce the time complexity of algorithm. PruneMatrix
algorithm is able to eliminate duplicate nodes , thereby
improving the performance. PruneHash algorithm avoid
searching of node in matrix sequentially and its time
complexity is of the order constant O(C) where C is
constant whereas PruneMatrix algorithm time complexity is
of the order O(N). Our experimental results shows that
PruneMatrix and PruneHash algorithms are efficient
compared to existing distance measures, further, PruneHash
is efficient compared to PruneMatrix algorithm.

REFERENCES
[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient Similarity Search In

Sequence Databases, in: FODO, Springer Verlag, 69–84, 1993.
[2] R. Agrawal, K. ip Lin, H. S. Sawhney, K. Shim, Fast Similarity

Search in the Presence of Noise, Scaling, and Translation in Time-
Series Databases, in: In-VLDB, 490–501, 1995.

[3] M. H.W. Kelvin KamWing Chu, Fast Time Series Searching with
Scaling and Shifting, in: ACM-PODS, 237–248, 1999.

[4] D. J. Berndt, J. Cli
ord, Finding Patterns in Time Series: A Dynamic Programming
Approach, in: Advances in Knowledge Discovery and Data Mining,
229–248, 1996.

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 5

[5] C. F. Yasushi Sakurai, Masatoshi Yoshikawa, Fast Similarity Search
under the Time Warping Distance, in: ACM-PODS, 326–337, 2005.

[6] D. Q. Goldin, T. D. Millstein, A. Kutlu, Bounded similarity querying
for time-series data, Information and Computation 194 (2) (2004)
203 – 241, ISSN 0890-5401.

[7] K. Yang, C. Shahabi, An efficient k nearest neighbor search for
multivariate time series, Information and Computation 205 (1) (2007)
65 – 98, ISSN 0890-5401.

[8] G. Das, D. Gunopulos, H. Mannila, Time-Series Similarity Problems
and Well-Separated Geometric Sets, Nord. J. Comput. 8 (4) (2001)
409–423.

[9] M. Vlachos, G. Kollios, D. Gunopulos, Discovering Similar
Multidimensional Trajectories, in: In ICDE, 673–684, 2002.

[10] D. Buzan, S. Sclaro
, G. Kollios, Extraction and Clustering of Motion Trajectories in
Video, in: 17th International Conference on Pattern Recognition,
ICPR 2004, Cambridge, UK, August 23-26, 2004.

[11] M. Vlachos, D. Gunopulos, G. Kollios, Robust Similarity Measures
for Mobile Object Trajectories., in: DEXA Workshops, IEEE
Computer Society.

[12] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. J. Keogh,
Indexing MultiDimensional TimeSeries with Support for Multiple
Distance Measures, VLDB J. 15 (1) (2006) 1–20

[13] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases,
JOURNAL OF KNOWLEDGE AND INFORMATION SYSTEMS 3
(2000) 263–286.

[14] M. D. Morse, J. M. Patel, An efficient and accurate method for
evaluating time series similarity., in: C. Y. Chan, B. C. Ooi, A. Zhou
(Eds.), SIGMOD Conference, ACM, ISBN 978-1-59593-686- 8,
569–580.

[15] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast Subsequence
Matching in Time-Series Databases, 1994.

[16] B.-K. Yi, H. V. Jagadish, C. Faloutsos, Efficient Retrieval of Similar
Time Sequences Under Time Warping, in: S. D. Urban, E. Bertino
(Eds.), Proceedings of the Fourteenth International Conference on
Data Engineering, Orlando, Florida, USA, February 23-27, 1998,
IEEE Computer Society, ISBN 0-8186-8289-2, 201–208, 1998.

[17] K.-P. Chan, A. W. chee Fu, Efficient Time Series Matching by
Wavelets, in: In ICDE, 126–133, 1999.

[18] B.-K. Yi, C. Faloutsos, Fast Time Sequence Indexing for Arbitrary
Lp Norms., in: A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U.
Dayal, N. Kamel, G. Schlageter, K.-Y. Whang (Eds.), VLDB,
Morgan Kaufmann, ISBN 1-55860-715-3, 385–394,2000.

[19] Y. Cai, R. Ng, Indexing Spatio-temporal Trajectories with
Chebyshev Polynomials, in: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’04, ACM, New York, NY, USA, ISBN 1-58113-859-8,
599–610, 2004.

[20] E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, M. Cardle,
Indexing Large Human-Motion Databases., in: M. A. Nascimento,
M. T. zsu, D. Kossmann, R. J. Miller, J. A. Blakeley, K. B. Schiefer
(Eds.), VLDB, Morgan Kaufmann, ISBN 0-12-088469-0, 780–791,
2004.

[21] E. Keogh, Exact Indexing of Dynamic Time Warping, 2002.
[22] E. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, M. Cardle,

Indexing Large Human-motion Databases, in: Proceedings of the
Thirtieth International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, VLDB Endowment, ISBN 0-12-088469-0,
780–791, 2004.

[23] D. Rafiei, A. O. Mendelzon, Querying Time Series Data Based on
Similarity, IEEE Transactions on Knowledge and Data Engineering
12 (2000) 675–693.

[24] H. V. Jagadish, Review - Landmarks: a New Model for Similarity-
based Pattern Querying in Time Series Databases., ACM SIGMOD
Digital Review.

[25] B. Bollobs, G. Das, D. Gunopulos, H. Mannila, Time-Series
Similarity Problems and Well-Separated Geometric Sets., in:
Symposium on Computational Geometry, 454–456, 1997.

[26] N. Meratnia, R. A. de By, Aggregation and comparison of
trajectories., in: A. Voisard, S.-C. Chen (Eds.), ACM-GIS, ACM,
ISBN 1-58113-591-2, 49–54, 2002.

[27] B. Lin, J. Su, Shapes based trajectory queries for moving objects., in:
C. Shahabi, O. Boucelma (Eds.), GIS, ACM, ISBN 1-59593-146-5,
21–30,2005.

[28] Y. Wu, J. Shen, M. Dai, Traffic object detections and its action
analysis., Pattern Recognition Letters 26 (13) (2005) 1963–1984.

[29] J. P. B. Rubio, R. Marfil, A. Bandera, J. A. Rodrguez, L. Molina-
Tanco, F. S. Hernndez, Fast gesture recognition based on a twolevel
representation., Pattern Recognition Letters 30 (13) (2009) 1181–
1189.

[30] M. J. V. Leach, E. P. Sparks, N. M. Robertson, Contextual anomaly
detection in crowded surveillance scenes, Pattern Recognition Letters
44 (2014) 71–79.

[31] Z. Chen, H. T. Shen, X. Zhou, Discovering popular routes from
trajectories., in: S. Abiteboul, K. Bhm, C. Koch, K.-L. Tan (Eds.),
ICDE, IEEE Computer Society, ISBN 978-1-4244-8958-9, 900– 911,
2011.

[32] L.-Y.Wei, Y. Zheng,W.-C. Peng, Constructing popular routes from
uncertain trajectories., in: Q. Y. 0001, D. Agarwal, J. Pei (Eds.),
KDD, ACM, ISBN 978-1-4503-1462-6, 195–203, 2012.

[33] X. Li, J. Han, J.-G. Lee, H. Gonzalez, Traffic Density-based
Discovery of Hot Routes in Road Networks, in: Proceedings of the
10th International Conference on Advances in Spatial and Temporal
Databases, SSTD’07, Springer-Verlag, Berlin, Heidelberg, ISBN
978-3-540-73539-7, 441–459, 2007.

[34] M. Lichman, UCI Machine Learning Repository,
URL http://archive.ics.uci.edu/ml, 2013.

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 6

