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Abstract—  Edit distance measures such as DTW, EDR , ERP , 
LCSS are used to compare trajectories for similarity. These 
distance measures are defined recursivly. The tree structure of 
such distance measures have large number of nodes. The large 
number of nodes make such distance measures more costly in 
terms of time complexity. There is need to reduce the number 
of nodes of tree and makes it more faster. After analysing the 
tree structure of different resursive edit distance measures, we 
have found that there are many duplicate nodes present in the 
tree and these duplicate nodes can be eliminated. We have 
proposed two algorithms which eliminate the duplcate nodes 
and makes algorithm more efficient as compared to existing 
distance measures. The first algorithm, PruneMatrix prune 
the tree based on the duplicate nodes found in the tree and 
unique nodes are stored in the matrix. As an when duplicate 
node is found , it is inserted into the matrix. This technique 
has extra overhead of processing matrix as and when node is 
added or searched an thus reduces the performance. In order 
to eliminate this extra overhead , we have proposed second 
algorithm, PruneHash, identifies the duplicate nodes and store 
it in hash table instead of table. Hash table takes constant time 
to search node from the table, thereby increasing the 
performance. We have carried out extensive experimental 
study on different datasets and recorded the performance of 
existing and proposed techniques. Experimental results 
revealed that, PruneMatrix and PruneHash techniques are 
efficient compared to the existing methods, whereas 
PruneHash technique is faster compared to PruneMatrix. 

Keywords—  Edit Distances, Tre Pruning, Prune Matrix, 
Prune Hashing. 

I. INTRODUCTION

Large number of time series trajectories are generated by 
moving objects and such trajectories need to be processed 
to extract hidden information. Extracting hidden 
information from time series trajectories is very challenging 
task and also time consuming. Two time series trajectories 
are compared using edit distance measures for similarity. 
The similarity distance computed by edit distance will 
decide whether trajectories are similar or not. If the 
similarity distance is less or equal to some threshold value , 
then two trajectories said to be similar. Edit distance such 
as DTW,EDR,ERP and LCSS are basic and popular 
distance measures used to compare time series trajectories 
for similarity. These distance measures are defined 
recursivly as shown below:- 

1. Dynamic Time Waring (DTW) measure:-
DTW (R, S ) = dist (r1, s1) + min { (DTW (Rest (R ), Rest (S)),

DTW (Rest (R ), S  ), DTW (R, Rest (S  ))) } (1) 

2. Edit Distance with Real Sequence measure:-
EDR (R,S) = min { (EDR (Rest (R ), Rest (S)) + Matchdist,

EDR (Rest(R),S) +  1, EDR (R,Rest (S  )) +  1) } (2) 
3. Edit Distance with Real Penalty measure :-

ERP(R,S) = min{ (ERP(Rest(R ), Rest(S)) + dist (r 1, s1), 
ERP(Rest(R ),S) + dist (r1, g ), EDR(R,Rest(S  )) + dist (s1, g) } 

(3)
4. Longest Common Sub Sequence measure:-
LCSS(R,S) = max{(LCSS(Rest(R),Rest(S)) + 1, LCSS(Rest(R

), S) + dist (r1, g),LCSS(R,Rest(S)) + dist(s1,g ) }   (4) 
 All the above distance measures discussed are recursive 

in nature. This recursive definition of distance measures is 
responsible for generating huge tree with large number of 
nodes. After careful study of tree generated , we have 
revealed that there are many duplicates nodes present in the 
tree. These nodes need to be eliminated in order to reduce 
the time complexity. Recursive function terminates when 
the length of either one of the two trajectories is zero and it 
returns the similarity value as the minimum of the 
arguments passed to the recursive function. 

There are many applications of similarity search of time 
series trajectories. 

1. Personal Security:- Every eminent personality is
worried about his or her security. Each day they are under 
tension that someone is following or traking them. There is 
need to  provide safey to such people by identifying 
possible threat from unknown people. Searching of similar 
trajectories will identify all the persons whose trajectories 
are almost similar to eminent person. If trajectories are 
matching, then for how many days such similarities are 
found and cross checked with threshold value. If number of 
count is greater than some threshold value, then warning 
message is send to eminent personality for possible threat 
and proper care can be taken to avoid possible attack in near 
future. 

2. ECG of Patient:- Most of time , doctors are checking
ECG of the patient manually and such practice is harmful 
since human being can make a mistake. Manually checking 
of ECG is need to be eliminated and there is need to make 
this process automatic. In automatic system, ECG of the 
patient can be compared with the normal ECG of the 
persons which is stored in the database. If the ECG of the 
patient is not matching with the normal ECG of the person , 
then there is some problem with the patient and he might be 
suffering  from a heart problem. Our automatic system 
would compare time series trajectories of ECG and display 
final results to the doctor, and based on the output doctor 
would take appropriate action. If ECGs are not matching , 
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then doctor might perform thorough investigation on the 
ECG to identify main cause of the problem. 

3. Traffic Management:- Vehicles Trajectories can be 
used to manage the amount of traffic on the road. The flow 
of traffic can be analysed by capturing traffic passing on the 
road and in case of congestion , alternate solution can be 
proposed. RTO officers can used the traffic information and 
depute traffic  police staff to control the flow of traffic.  

4. Famous Routes:- Vehicles Trajectories can be used to 
identify popular routes in the given state or country. The 
trajectories of the vehicles can be compared with database 
trajectories to identify number of similar trajectories. If the 
number of the matched trajectories are above certain 
threhold value, then that route can be called as a popular 
route. 

 

Contribution of our work in this paper is as follows: 
1.  We have proposed PruneMatrix Technique to prune the 

number of nodes of tree. 
2.  In order to reduce extra overhead of PruneMatrix, we 

have proposed PruneHash Technique to prune the 
number of nodes of the tree. 

3.  Experimental results revealed that, PruneMatrix and 
PruneHash are efficient compared to existing 
techniques, further, PruneHash is efficient compared to 
PruneMatrix technique. 

 

The rest of paper is organised as follows. In section 2 we 
present related work. In section 3, we propose PruneMatrix 
and PruneHash algorithms to prune redundant nodes of tree. 
Section 4, provides the experimental results and finally, 
section 5 concludes the paper. 
Symbols Meaning 

R Time Series Trajectory 

S Time Series Trajectory 

[M,N] M is the length of R trajectory 
N is the length of S trajectory 

PruneMatrix Pruning tree using Matrix 

PruneHash Pruning tree using Hashing 

TABLE 1: MEANING OF SYMBOLS USED  

II. RELATED WORK 

Searching of similar trajectories is challenging problem 
and there is constant demand for efficient distance measure. 
Quite a few researchs have been contributed toward this 
field by proposing distance measures. The pioneering work 
by [1] ,[2] to compare trajectories for similarity using 
Euclidean distance measure. Eucledian distance measure 
cannot be applied directly to compare trajectories and thus 
there is need of scaling and translation of trajectories. In [3] 
trajectories were scaled and translated efficiently and 
compared for similarity. Eucledian distance measure is 
sensitive towards noise and local time shifting. [4] 
introduced DTW to allow a time series trajectories to be 
stretched to provide better match with another trajectories. 
DTW distance measure was compared for the perfomance 
and DTW was enhanced using lower bounding distance 
measure with segmentation in [5]. [6] introduced bounded 
similarity query with the help of eucledian distance to 

identify similar time series. [7] have proposed Eros,Muse 
and Ropes distance measures to identify k-nearest 
neigbhour using principle component. 

LCSS distance measure is used in [8] and [9] to compare 
trajectories for similarity. LCSS measure allows a variable 
length gap to be inserted during matching of trajectories 
and hence robust to the noise. Extended LCSS distance 
measure is used to compare trajectories from video in [10]. 
Initially trajectories were extracted from video and then 
subsequently compared for similarity using LCSS measure. 
Multi dimesional trajectories were compared for similarity 
using LCSS in [9]. In [11] LCSS distance measure was 
modelled with sigmoidal function to compares trajectories 
for similarity. Mostly index need to be created again and 
again and most of distance measures are modeled to support 
single distance measure. In [12], index multi dimensional 
trajectories supporting multiple distance measures such as 
LCSS , DTW are proposed and the index structure was 
design in a such a way that there was no need to rebuild 
index again and again. Various dimensionality reduction 
methods were investigated in [13] and proposed novel PAA 
technique to reduce dimensionality. In [14] figure out the 
extra computation done by LCSS and same is enhanced by 
fine tuning the threshold value.  

Most of distance measures are time consuming and hence 
there is need to index such distance measures.Various 
indexing techniques [15-20] were proposed to improve the 
performance of distance measures. Lower bound  technique 
is proposed to index the distance measure and compares 
trajectories for similarity in [19].[21] have enhanced the 
indexing method of DTW by modeling exact indexing. 
Human motions were efficiently indexed using bounding 
rectangle by [22]. In [23] authors have proposed technique 
o create index only once and multiple tranformations were 
applied instead of appliying indexing multiple times, thus 
improving the perfomance of distance measure.  

[24] proposed landmark similarity distance measure to 
compares trajectories for similarity by considering 
landmark as human perception and comparing trajectories 
based on lanmarks. Distance measure is defined using 
geometric set with deterministic and random property in 
[25]. Trajectories were aggregated and compared for 
similarity in [26]. In [27], One way distance(OWD) 
measures were proposed to compare the similarity between 
trajectories. In [28], moving objects were detected using 
Gaussian Hermit moments(GHM) based on the trajectories 
and also it identify direction of objects. The gestures of 
human motion were recognised based on the trajectories 
generated by human body in [29]. Eigen tracker technique 
was proposed to detect the changing shapes of human 
gesture. Anomaly behaviour of crowded surveillance 
screnes were detected using statistical method in [30]. 
Popular routes were detected using similar trajectories 
matching in [31]. The popular routes were detected 
automatically without taking much inputs from the user and 
based on the probabilistic method.In [32], RICK framework 
was defined to identify popular routes from uncertain 
trajectories. In [33], the hot route was identified based on 
the traffic density on the road and flowscan framework was 
developed. 
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III.   TREE PRUNING BASED TECHNIQUE 

The recursive nature of edit distance measures are 
responsible for generating huge tree structure with large 
number of nodes. As the size of datasets is increasing, the 
number of nodes of tree is growing exponentially. For every 
call, three nodes are getting created and each node in turn 
makes a call to three more functions and which create three 
more nodes and this process continues till both input 
trajectories are processed. We have applied PruneMatrix 
and PruneHash to DTW distance measures and similarly 
can be applied to remaining distance measures. 

The DTW distance measure algorithm is shown in 
algorithm 1. The DTW distance measure is defined as 
recursive function which call itself and for every recursive 
call it make three recursive calls. Each function call is 
consider as node of the tree. DTW recursive function 
generate tree structure with large number of nodes and each 
node of the tree is processed to compute  similarity 
distance. DTW recursive function is discussed in detail in 
Algorithm 1. 

----------------------------------------------------------------- 
Algorithm 1: DTW(I,J) Algorithm 
------------------------------------------------------------------ 
 Input: R and S : Input Trajectories 
 Output: Similarity Distance : dist 
1) if I == N or J == M  then 
2) return 0 
3) d= dist(I,J) 
4) return  
d+min{DTW(I++,J++),DTW(I,J++),DTW(I+,J)} 
--------------------------------------------------------------------- 
 

Consider the two input trajectories R={(1,1),(1,2)} and 
S={(3,1),(1,4)} of length 2 respectively. The tree of the 
recursive DTW distance measure for two input trajectories 
R and S is as shown in the Figure 1. Each node is 
represented with the index value of two trajectories such as 
i and j. When the call is made to the recursive DTW 
function, index value of i and j are updated. Initially the 
root node of the tree has initialise to to 0, indicating two 
trajectories are processed from first point. The nodes n2,n10 
and n12 having the same value (1,1) and these nodes are 
duplicate nodes. There is no need to process such nodes 
three times. Such node can be processed only once and we 
can use its processed value for rest of the computation. 
Thus , we can prune the subtree of duplicate nodes without 
further processing. 

 
Figure 1 : Tree for Recursive Function 

A.  PruneMatrix Algorithm 

The DTW recursive function makes three recursive calls 
and goes in the depth first search manner. Each recursive 
call is considered to be a node of the tree. So, every node is 
expanded as three child nodes of tree till leaf node is 
explored. After reaching leaf node , function backtrack to 
its previous explored node and try to explore remaining 
paths of the tree. Once root node is visited after 
backtracking all the nodes of the tree, the similarity distance 
is computed. 

In PruneMatrix algorithm , every new node information 
is kept in the matrix and subsequently used to check if there 
are 
any duplicate nodes down the tree. Starting with root node, 
root node is stored in the matrix and three more nodes are 
explored. The new node which is generated is first checked 
in the matrix ,if this node is not present, then it is added to 
the matrix and its child nodes are explored. If node is 
already present in the matrix , then this node is not added to 
matrix and it is marked as duplicate node. Since it is 
duplicate node , there is no need to explore its subtree and 
skip the entire subtree. Thus , we are reducing the number 
of nodes of tree.  

--------------------------------------------------------------------- 
 Algorithm 2: PruneMatrix(I,J) Algorithm 
------------------------------------------------------------------ 
 Input: R and S : Input Trajectories 
 Output: Similarity Distance : dist 
1)  if I == N or J == M  then 
2) return 0 
3) str1=str1 + R[I] 
4) str2= str2 + S[j] 
5)  for each point k 2 count  do 
6)  if Lookup[k].w1 ==str1 and Lookup[k].w2 ==str2 
 then 
7) flag=1 
8) distprune=Lookup[k].dist 
9)  if flag == 1  then 
10) return distprune 
11) d=dist(I,J) 
12) td = d + min {PruneMatrix (I++,J++), 

PruneMatrix(I,J++), PruneMatrix(I++,J) } 
13) Lookup[count++].w1=str1 
14) Lookup[count++].w2=str2 
15) Lookup[count++].dist=td 
16) return td 
--------------------------------------------------------------------- 
 
The PruneMatrix algorithm is discussed in detail in 

Algorithm 2. Lines 1-2, define terminating condition for the 
PruneMatrix function. If length of either of the trajectory is 
equal to the length, then terminate the recursive call. Lines 
5-10, search node in the matrix and if the node is found , 
then recursive call to PruneMatrix is not made. If the node 
is not found in the matrix , then new nodes are explored by 
making call to recursive PruneMatrix function. Line 12, 
makes call to recursive PruneMatrix function with three 
arguments. Lines 13-15, add new node to the matrix. 

 

Gajanan S. Gawde et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 1-6

www.ijcsit.com 3



B. PruneHash Algorithm 

PruneMatrix algorithm stores the information of every 
new node it encounter into the matrix. As the size of the 
matrix is grows large, we need to check if the node is 
present in the matrix. So, the time complexity of searching 
a node in matrix is of the order O(N) where N is the number 
of elements of the matrix. This is an extra overhead of the 
PruneMatrix algorithm and our algorithm slow down as the 
number of elements of time series trajectories increases. In 
order to remove this extra overhead , we have proposed 
hashing technique to reduce the time complexity of the 
searching. The time complexity of searching using hash 
function is of the order of constant i.e. O(C) where C is the 
constant.  

We have proposed PruneHash Algorithm which 
eliminates the extra overhead faced by the PruneMatrix 
algorithm. In PruneHash algorithm , we have defined hash 
function using index i and j of two trajectories. Hash 
function is used to generate hash value to generate the index 
and this index is used to search the node in the matrix rather 
than performing sequential search. First, we are checking if 
new node is present in the Hash Table. If new node is not 
present, then we add this new node to the Hash Table with 
the help of index value computed using Hash function. The 
search operation on Hash Table is performed by using hash 
function in constant time. So , also to store the value in the 
Hash Table , the hash function is used. Using Hashing 
technique we are performing searching in constant time and 
therefore there is reduction of execution time at each node.  

--------------------------------------------------------------------- 
 Algorithm 3: PruneHash(I,J) Algorithm 
------------------------------------------------------------------ 
 Input: R and S : Input Trajectories 
 Output: Similarity Distance : dist 
1)  if I == N or J == M  then 
2) return 0 
3) str1=str1 + R[I] 
4) str2= str2 + S[j] 
5) str= str1 + str2 
6) index = (I merge J) mod N 
7)  if Lookup[index].w1 ==str1 and Lookup[index].w2 
==str2  then 
8) flag=1 
9) distprune=Lookup[index].dist 
10)  if flag == 1  then 
11) return distprune 
12) d=dist(I,J) 
13) td = d + min{PruneHash(I++,J++),PruneHash(I,J+ 
+),PruneHash(I++,J) }  
14) index = (I merge J) mod N 
15) Lookup[index].w1=str1 
16) Lookup[index].w2=str2 
17) Lookup[index].dist=td 
18) return td 
--------------------------------------------------------------------- 

 
The PruneHash algorithm is discussed in detail in 

Algorithm 3. Lines 1-2, define terminating condition for the 
PruneHash function. If length of either of the trajectory is 
equal to the length, then terminate the recursive call. Lines 

5-11, search node in the hash table using hashing function 
and if the node is found , then recursive call to PruneHash 
is not made. If the node is not found in the hash table , then 
new nodes are explored by making call to recursive 
PrunePrune function. Line 13, makes call to recursive 
PruneHash function with three arguments. Lines 14-17, add 
new node to the hash table. 

IV.   EXPERIMENTAL STUDY 

A.  Characteristic of Trajectories Datasets 

Character Trajectories:- This dataset is genetated by 
Lichman (2013), it consist of 2858 character samples, 
contained in the Three Dimensional Matrix. Each character 
sample is a 3-dimensional pen tip velocity trajectory. This 
is contained in matrix format, with 3 rows and T columns 
where T is the length of the character sample. 
UJI Pen Character:- This dataset is generated by Lichman 
(2013), a character database by collecting samples from 11 
writers. Each writer contributed with letters (lower and 
uppercase), digits, and other characters. Two samples have 
been collected for each pair writer/ character, so the total 
number of samples in this database version is 1364. 
Optical Recognition Character:- This dataset is generated 
by UCI Lichman (2013), who have used preprocessing 
programs  made available by NIST to extract normalized 
bitmaps of handwritten digits from a preprinted form. From 
a total of 43 people, 30 contributed to the training set and 
different 13 to the test set. 32x32 bitmaps are divided into 
nonoverlapping blocks of 4x4 and the number of on pixels 
are counted in each block. This generates an input matrix of 
8x8 where each element is an integer in the range 0 to 16. 
This reduces dimensionality and gives invariance to small 
distortions. 
Real Time Characters :- This is our own synthetic dataset 
generated in real time with the help of 100 user. This 
dataset is generated using VB.net platform. Each user was 
asked to draw character on the display screen and same 
character was saved in the form of character trajectories. 
Each person had generated 50 number of different character 
trajectories.  

B.   System Configuration 

Experimental study was carried out on Pentium V 
processor with 4GB of RAM and 500GB of harddisk 
memory. All the programs were successfuly implemented 
using C++  language. The g++  compiler was used to 
compile the C++  programs. Ubuntu 12.04 operating system 
was used to carry out experimental study. The programs 
were debugged thoroughly and correct output was obtained. 
Experimental study was carried out with different character 
datasets such as Character Trajectories, UJI Pen character, 
Optical Recognition of Character and MouseTracking 
character Trajectories datasets. 

 
C.   Results and Interpretation 

Our proposed PruneMatrix and PruneHash algorithms 
were tested on different datasets and their execution time 
and number of nodes generated were recorded. The number 
of nodes generated using basic distance measures and the 
proposed pruning techniques were compared and result is 
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shown in the Table 2. As the length of trajectories is 
increasing , the number of nodes also increases 
exponentially. The pruned algorithm reduces the duplicate 
nodes and number of nodes in the tree are reduced 
drastically. This lead to the reduction in the execution time 
of the algorithm.  

Trajectory Length DTW PruneMatrix 

2 19 13

3 94 28

4 481 49

5 2524 76

TABLE 2 : PERFORMANCE OF EDIT DISTANCES NOS OF NODES  

Trajectory Length DTW (ms) PruneMatrix (ms) 

10 0.4 0

11 2.22 0

12 12.38 0

13 71.41 0

TABLE 3: PERFORMANCE OF EDIT DISTANCE EXECUTION TIME 

Trajectory Length PruneMatrix(ms) PruneMatrix(ms) 

100 1.72 0.072

200 28.31 0.28

300 144.46 0.650

400 464.10 1.17

TABLE 4: PERFORMANCE OF PRUNEMATRIX AND PRUNEHASH IN TERM OF 

EXECUTION TIME.  

Execution time of the proposed algorithms were recorded 
with different length of trajectories. The basic edit distances 
are taking lot of time and their execution time increases 
exponentially. The trajectory of length 10 takes 0.40s of 
execution time whereas length of 13 takes 71.41s. This 
indicates that, as the length of the time series trajectory 
increases, its execution time also increases exponentially 
and it is huge. On the other hand , our proposed prune 
algorithm takes negligible amount of time for the length of 
10,11,12,13 and it is almost zero as shown in the table 3.  

Figure 2: Reduction Ration of Proposed Techniques 

We have tested our proposed PruneMatrix and PruneHash 
algorithms on different set of datasets. PruneMatrix and 
PruneHash algorithms were tested on time series 
trajectories of very large length and the results of two 
algorithms is shown in the table 4. The PruneMatrix 
algorithm is taking more time compared to PruneHash 
algorithm. PruneHash is very fast and it is very efficient as 
compared to PruneMatrix algorithm. Our proposed 
PruneMatrix and PruneHash algorithms to reduce the 
duplicate nodes of the tree. The amount of reduction 
achieved using both the algorithms are very high and same 
can be seen from the graph shown in Figure 2. As the 
length of  trajectories increases , the reduction ratio is 
increasing exponentially. Initially the reduction ratio is 
small but as it crosses trajectory length of 10 , the reduction 
ratio is almost equal to 99.5 and thereafter it remains 
constant. The Performance of PruneMatrix and PruneHash 
algorithms is shown in Figure 3 graphically. 

Figure 3: Performance of PruneMatrix and PruneHash 

 CONCLUSION

We have proposed novel PruneMatrix and PruneHash 
algorithms to improve the performance of the existing basic 
distance measures. Our proposed pruning techniques 
identify duplicate nodes of the tree and pruned the nodes to 
reduce the time complexity of algorithm. PruneMatrix 
algorithm is able to eliminate duplicate nodes , thereby 
improving the performance. PruneHash algorithm avoid 
searching of node in matrix sequentially and its time 
complexity is of the order constant O(C) where C is 
constant whereas PruneMatrix algorithm time complexity is 
of the order O(N). Our experimental results shows that 
PruneMatrix and PruneHash algorithms are efficient 
compared to existing distance measures, further, PruneHash 
is efficient compared to PruneMatrix algorithm. 
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